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This paper reports some experimental results on two-phase flows in model two-dimensional porous media.
Standard microfluidic techniques are used to fabricate networks of straight microchannels and to control the
throat size distribution. We analyze both the invasion mechanism of the medium by a nonwetting fluid and the
drainage after the percolation for capillary numbers lying between 10−7 and 10−2. We propose a crude model
allowing a description of the observed capillary fingering that captures its scaling properties. This model is
supported by numerical simulations based on a pore-network model. Numerical simulations and experiments
agree quantitatively.
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I. INTRODUCTION

An important class of “out of equilibrium” patterns occurs
by forcing immiscible fluids in interconnected thin gap net-
works, a phenomenon frequently encountered in nature as
well as in many manmade systems �1,2�. Illustrative ex-
amples include mineral processing, painting, construction
engineering �3�, printing �4�, oil recovery �5�, and soil me-
chanics. These fluid-fluid or fluid-gas displacements generate
preferential flow pathways along one of the fluid flows,
forming patterns ranging from compact to ramified and frac-
tal. The formation and selection of these patterns are chal-
lenging problems in the field of nonequilibrium physics and
central for many industrial applications. For instance,
“tongues of water in oil” are a limiting factor in secondary
oil recovery. One of the major difficulties in achieving a
good understanding of preferential pathways in intercon-
nected network is the large number of parameters potentially
involved. These include the viscosity of the two fluids, the
surface tension between them, the wetting properties, their
respective flow rates, the topology of the network, and the
considered length scales �6�.

In the absence of viscous or gravity forces, the displace-
ment �drainage� of a wetting fluid by a nonwetting fluid is
solely governed by the capillary forces. They prevent the
nonwetting fluid from spontaneously entering in a porous
medium. It can only enter a throat �of radius R� when the
pressure in the nonwetting fluid exceeds the pressure in the
wetting fluid by a value Pc, the capillary pressure given by
Pc=2� /R, where � is the surface tension �7�. Pressures in the
nonwetting fluid and in the wetting one are uniform, and the
displacement is governed by the pore size distribution. As a
consequence, at the pore-network level, the front separating
the two fluids advances by penetrating the largest pore throat
accessible �i.e., the smallest capillary resistance�. This pro-
cess is successfully described by the invasion-percolation
model �8,9�.

In the presence of both viscous and capillary forces, the
pressure field is not uniform anymore. The viscous forces

modify the difference of pressure between the two fluids and
promote the entrance of the invading fluid in smaller throat.
In this case, the displacement is characterized by two dimen-
sionless parameters: the capillary number Ca=V�1 /�, where
V is the velocity of the injected fluid, �1 is its viscosity, and
� is the surface tension, and the viscosity ratio M =�1 /�2,
where �2 is the viscosity of the displaced fluid. For M �1, at
low capillary numbers, the zone separating the two fluids
includes a front with open structures on many length scales
surrounded by two compact structures. As Ca increases, the
front width decreases and leaves the place to a stable com-
pact flow �10,11�. These two propagation mechanisms can be
captured using concepts from gradient percolation �i.e., in-
troducing a pressure gradient in the two fluids� �12–17�. For
M �1, same picture holds for low capillary numbers. How-
ever, at high capillary numbers, viscous fingering causes an
unstable displacement �17–19�.

These phenomena were experimentally evidenced using
micromodels of porous media which allow direct observa-
tions of the phases displacements �7,11,20,21�. However, at
this stage, the comparison between experiments and theory
remains usually qualitative or semiquantitative and is limited
to the features of the patterns �14–16,22�. One of the diffi-
culties to achieve a quantitative description is to account for
the detailed features of the porous medium used. Microflu-
idic techniques offer the opportunity to fabricate micromod-
els with well-defined surface and geometrical features
�21,23�. In this work, we revisit this problem using these to
fabricate networks of straight microchannels with controlled
size heterogeneities. Great care is brought to the control of
the wetting properties. The features of the flow are deter-
mined from the movies of the filling of the micromodel. The
measurement of the local velocities is compared to numerical
simulations based on a network model �13,14� where the
exact geometrical features of the micromodels are incorpo-
rated.

The paper is organized as follows. We present the experi-
mental method in Sec. II. Then we discuss the experimental
data in Sec. III. Section IV deals with a crude model to
describe the invasion phase. In Sec. V, we report the results
of numerical simulations and compare it to the experimental
results. Finally, Sec. VI is devoted to the analysis of the
filling behavior after percolation.*hugues.bodiguel@u-bordeaux1.fr
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II. EXPERIMENTAL METHOD

We performed experiments in microfluidic chips, made
either of glass or polydimethylsiloxane �PDMS�.

A. Design, microfabrication, and features of PDMS devices

Figure 1 displays the typical design used. It comprises
three zones: the inlet, the porous domain, and the outlet. In
order to impose a parallel pressure drop and a homogeneous
filling of the cell, the inlet and the outlet have a treelike
shape.

The porous geometry domain itself consists of a square
lattice. The distance between two junctions � is homoge-
neous and set to 250 �m. The width of the channels is not
homogeneous; it is set randomly around a value w�, with a
normal distribution of standard deviation �w� without any
spatial correlations.

These designs are printed on a transparency that will be
used as a photomask. A SU8 2050 negative photoresist is
spread on a silicon wafer and insolated through the previ-
ously described transparency. After resin development, a
positive relief of photoresist on the silicon wafer is obtained.
It serves as a mold. It is filled with a mixture of PDMS and
curing agent and then heated during 45 min at 65 °C. The
PDMS replica is then peeled from the mold and is sealed to
a flat plate of glass previously coated with a thin layer of
cured PDMS. The two surfaces are bounded together just
after plasma exposure. The obtained surface after this bound-
ing is hydrophilic and remains hydrophilic for more than 12
h. We will use in the following hydrophilic PDMS device.
The experiments are conducted just after plasma exposure.

In this process, the features of the obtained channels net-
works are exactly the one designed on the photomask. The
mean width w of the channels is thus equal to w�. The height
of the microchannels h is set by the spin-coating process.
Table I reports the features of the PDMS device that is used.
Great care is devoted to the characterization of the throat size
distribution. The standard deviation �w of the widths of the
channels is set by the design and is equal to �w� . Microfabri-
cation inaccuracies during the spin-coating process lead to a
noncontrolled heterogeneity of the channel heights. The stan-
dard deviation �h of the channel heights is estimated using a
profilometer and is approximately equal to 0.5 �m. The
relative standard deviation 	 of the curvature is given by 	

=2��h /h2+�w /w2� /C, where C=2�1 /h+1 /w� is the mean
curvature. The permeability of the porous media, defined as
k=Q�L / �Nw�h
P�, is calculated from the theoretical hydro-
dynamic resistance of straight rectangular channels. In this
formula Q is the flow rate of the injected fluid, 
P is the
corresponding drop of pressure between the inlet and the
outlet of the device, and � is the viscosity of the Newtonian
injected fluid.

B. Design, microfabrication, and features of glass devices

In order to study various fluids, we have also made glass
microdevices. The design of the photomask follows the pro-
cedure described in the previous section. Glass borosilicate
wafers of thickness 500 �m were purchased from Sensor
Prep Services. A 50 nm layer of chromium followed by a 100
nm of gold is evaporated on the wafer. These layers are
sacrificial ones; they avoid hydrofluoric acid to attack the
whole wafer. Then, we spin coat a positive photoresist
�S1818� layer of approximately 2 �m. The resin is insulated
through the masks described in the previous section and then
developed. The gold and chromium layers are then removed
in the insulated areas using oxydative solutions. Then, the
wafer is immersed during 30 min in hydrofluoric acid from
VWR �20% in water�. The etching rate is about 1 �m /min.

Due to isotropic etching, the width of the channel w is
larger than the width w� designed on the mask. We thus
measure the width and the thickness of the channels after this
step with a profilometer. For w�=38 �m we obtain channels
having a width of about 90 �m after 30 min etching. We
assume however that the standard deviation of the width re-
mains close to the one set by the design. The standard devia-

λ

FIG. 1. Example of a mask used to grid �� / l=0.125�. The real
size of the porous domain �the square lattice� is 1.3 cm.

TABLE I. Geometrical features of the devices: Nw is the number
of junctions in the direction perpendicular to the pressure gradient,
Nl is the number of junctions in the direction parallel to the pressure
gradient, w is the mean width of the channels, �w is the standard
deviation of the width of the channels, h is the mean height of the
channel, �h is the standard deviation of the height of the channels,
	 is the relative standard deviation of the curvature, � is the poros-
ity of the porous medium, and k is the permeability.

a b

Material PDMS Glass

Nw�Nl 53�53 106�106

� a ��m� 250 250

w� ��m� 80 38

w ��m� 80 90

h ��m� 50 25

�w ��m� 20 6

�h ��m� 0.5 0.1

	 0.10 0.018

Coating FluoroSib

� 0.52 0.69

k �Darcy� 12.0 2.55

aWavelength of the square lattice.
bTrichloro�1H,1H,2H,2H perfluorooctyl�silane.
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tion of the height measurement is roughly equal to 100 nm.
The last significant step of the fabrication of the chip con-

cerns the thermal bonding of the two glass wafers: one with
the chip engraved and the other one used as a lid. The two
wafers are put 15 min in a mixture �50/50� of sulfuric acid
and hydrogen peroxide at 50% in water, both solutions were
purchased from Sigma Aldrich. They are then rinsed with
distilled water and dried with a nitrogen flow, and put in
contact together. They are then heated during 40 min at
705 °C and then 6 h at 523 °C �the glass transition of the
material is 525 °C, according to the manufacturer�. Glass
chips were finally coated by trichloro�1H,1H,2H,2H perfluo-
rooctyl�silane 97% �fluoroSi� to obtain oil wet surfaces. The
chips were first cleaned with a hydrogen peroxide/acid sul-
furic mixture and rinsed in distilled water. Then a flow of a
solution of fluoroSi in FC40 oil from 3 M at 0.05% in vol-
ume is achieved in the micromodel at 10 �l /h during 30
min. It is followed by flows of toluene, chloroform, ethanol,
and water for rinsing and then introduced for a few hours in
a furnace at 65 °C. Table I gives the features of the glass
microdevices that will be used in the following study.

C. Fluid and wetting properties

For all experiments, the displaced fluid is a wetting fluid
and the invading fluid is a nonwetting one. The wetting fluid
is either dodecane for glass surfaces or water in which a
small amount of dye is dissolved for observation issues for
the hydrophilic PDMS surface. The nonwetting is either
water/glycerol �glass devices� or a fluorinated oil FC40
�PDMS devices�.

The wetting properties of the systems are characterized by
the spreading parameter S=�WS− ��OS+��, where �WS, �OS,
and � are the water/solid surface, the oil/solid surface, and
the water/oil surface tensions, respectively. The liquid/liquid
surface tensions were measured using the pendant drop
method, while the liquid/solid ones are deduced from contact
angle measurements of a water droplet in air and of an oil
droplet in air on the solid surfaces �see Table II�. Note that
the colorant used for observation issues has tensioactive
properties and lowers the water dodecane surface tension.

The two systems, water in dodecane on glass coated with
fluoroSi and FC40 in water on PDMS, have a negative
spreading parameter, and are thus in a partial wetting situa-
tion. It is rather difficult to measure the advancing and re-
ceding contact angles inside the chip. Using images of a
water/oil meniscus inside a capillary tube that had undergone
the same coating procedure, we were able to provide an es-
timate. For FC40 in water on hydrophilic PDMS, the advanc-
ing contact angle is 160° and the receding one is 140°. For

water in dodecane on silanized glass, they are 140° and 110°.
For both systems the contact angle hysteresis is rather high.
Table II summarizes the wetting and viscous properties of
the systems used.

D. Experimental procedure

Before each experiment, the micromodel is filled with the
wetting fluid, using a syringe pump �Cetoni Nemesys�. Then
the invading phase is injected at a fixed flow rate in the range
2–10 000 �l /h. All the experiments are above the lowest
flow rate for which the step-by-step motion of the syringe
pump could be neglected, according to the manufacturer. The
use of inlet channels that are thicker than the micromodel
height ensures that the water phase does not penetrate into
the porous domain before the inlet is filled. This enables us
to define the time zero with a good accuracy to the time at
which the first junction of the porous domain is invaded by
the water phase.

A camera �JAI CM-200 GE� having a resolution of
1600�1200 and a frequency of 25 Hz with a 75 mm lens
mounted on extension rings is used to acquire image se-
quences of the drainage in the micromodel. A homogeneous
backlight is placed below the chip to obtain high-quality im-
ages, whose contrast is reinforced by an optical filter adapted
to the spectrum of the colorant dissolved in the aqueous
phase. The high contrast obtained allows a robust threshold-
ing of the images �see the next section�. On the images the
water phase thus appears in dark gray, while the oil phase
and the walls are brighter.

E. Data analysis

From the movies of the device filling, we determine the
area of the invading phase as well as the position of all the
menisci as a function of time. This allows us to estimate the
applied capillary number and a mean local capillary number.
The details of the procedure are given below.

Several analyses are performed on the images after the
experiments. The images are first thresholded to isolate the
invading phase. These images are directly used to measure
the area A1 of the invading phase. It linearly increases for t
� tp, where tp is the percolation time, i.e., the time at which
a continuous path is formed between the inlet and the outlet
of the porous domain. It is thus verified that the syringe
pump delivers a continuous and steady flow rate. The surface
flow rate q=dA1 /dt is measured. We checked that it is in
agreement with Q /h, where Q is the volume flow rate im-
posed by the syringe pump and h is the height of the micro-
channel. The typical deviation is on the order of 5%. The

TABLE II. Physical constants characterizing the three systems used.

�1

�mPa s� M

a

�deg�

r

�deg�
�

�mN/m�
S

�mN/m�

Glass fluoroSi coating/water/dodecane 1 0.7 140 110 25 −2.9

Glass fluoroSi coating/water-glycerol/dodecane 14 10 140 110 25 −2.9

PDMS/FC40/water 3.4 3.4 160 140 44 −19
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value of q is used to calculate the imposed capillary number
of the experiment, Cai, which allows the comparison be-
tween the different fluids used. For single-phase flow in a
regular grid, the flow rate theoretically vanishes inside the
channels perpendicular for symmetry reasons, and the mean
velocity inside the parallel ones is then vi=Q /NwS=q /Nww,
where Nw is the number of the channels parallel to the pres-
sure gradient and S is their cross section. We define the im-
posed capillary number as Cai=�1vi /�, where �1 stands for
the viscosity of the invading phase. The oil saturation So is
also deduced from the thresholded image sequence, So=1
−A1 /�A0, where � is the porosity of the micromodel calcu-
lated from the mask and A0 is the total area of the porous
domain.

Then the grid used for the mask is adjusted to the images,
in order to label each junction and each node. A node is the
place where four junctions meet. To estimate the local veloc-
ity field, we follow the procedure described bellow. We mea-
sure the time tm at which the node labeled m is invaded by
the water phase. We deduce the path followed by the water
by testing the four possible paths to the neighboring nodes.
This allows us to find the node n from which the water
comes. In more than 95% of the analyzed data, menisci
cover a distance l smaller than � between two successive
pictures. This algorithm allows us to reconstruct the time-
resolved menisci paths of the experiment. An example is
shown in Fig. 2.

We define a local velocity vmn=� / �tm− tn� and a corre-
sponding local capillary number Camn=�1vmn /�, where m
and n are neighboring nodes. The largest velocity that could
be measured by this method due to temporal sampling of the
camera is 6.2 mm/s. Averaging these data on space and time,
we calculate a mean local capillary number �Cal�. It has been
verified that this average does not vary significantly with
time. When the invading front is not sharp but exhibits a
fingering instability, �Cal� and Cai are not equal. They are
linked by the number of selected paths Ns, defined by Cai
= �Cal�Ns /Nw, where Nw is the number of channels along the

width of the grid, and where Ns�Nw. When there is no fin-
gering �perfect sweeping of the device�, Ns=Nw and thus
�Cal�=Cai.

III. EXPERIMENTAL RESULTS

We study systems in partial wetting situation, which are
fluorinated oil pushing water in hydrophilic PDMS device
�M =3.4� and water-glycerol mixtures pushing dodecane in
the fluoroSi glass device �M =0.7 and M =10�. Examples of
initially captured fluid saturation as a function of time and
typical pictures taking during the sweeping process are dis-
played in Fig. 3 for different applied capillary numbers. The
saturation curves exhibit two steps. During the invading step,
the injected fluid flows in the device and reaches the outlet.
For low applied capillary numbers an open structure grows
and fills the micromodel �see the first sequence in Fig. 3�.
The size of the clusters trapped behind the advancing front
decreases when the applied capillary number increases �see
the second sequence in Fig. 3�. For higher applied capillary
numbers, the growing structure is more compact. As soon as
the injected fluid reaches the outlet, �i.e., at the percolation
time�, the sweeping efficiency of the captured phase drops
dramatically. In some experiments �see the upper and lower
curves in Fig. 3�, we even note that the saturation remains

0
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300

400

500

600

Time (s)

FIG. 2. Example of data analysis for an experiment made in grid
a with Cai=4.3�10−7. The gray scale represents the time at which
the nodes have been invaded �the darker the sooner�, and the small
lines indicate the path followed by the invading fluid.

10−4 10−3
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0.4

0.6
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(time) x Cai

So

1.
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FIG. 3. The injected fluid is fluorinated oil; the captured fluid is
water. Experiments are performed on a hydrophilic PDMS grid
�grid a�. Top figure: evolution of the captured fluid saturation as a
function of time multiplied by the applied capillary number Cai.
From top to bottom Cai=9�10−7 �1�, 1.85�10−5, 2.4�10−4 �2�.
Bottom figures: typical pictures during the invasion process at two
different applied capillary numbers �labeled 1 and 2 in the top fig-
ure�. For the sake of clarity, the contrast of the picture has been
inversed. The darkest fluid is the injected fluid.
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perfectly constant after percolation. In the other cases �see
the middle curve in Fig. 3�, the sweeping of the captured
phase decreases strongly after percolation before vanishing.
We note that the higher the applied capillary number, the
better the global sweeping efficiency.

Let us now describe more quantitatively the invading
step. As explained in the experimental section, we measure
the mean local capillary �Cal� number before the percolation
and compare it to the applied capillary number Cai. Figure 4
displays three sets of data corresponding to three couples of
fluid having different viscosity ratios inside two different mi-
cromodels. The data evidence two regimes. For low Cai, the
mean local capillary number before percolation is higher
than the applied one and is well described by the relation
�Cal��Cai

1/2. As explained in the experimental section, the
ratio of these two quantities corresponds to the ratio between
the total number of channels Nw and the number of selected
paths Ns. This simply means that the flow occurs in a few
channels at a time and reflects the fingering that is seen in the
images displayed in Fig. 3. This regime will be called the
capillary regime in contrast to the viscous regime that is
observed at higher applied capillary numbers where �Cal� is
equal to Cai. Indeed, in this regime, flow occurs in all the
channels simultaneously. As shown in Fig. 4, the transition
from the viscous regime to the capillary one occurs at a
capillary number that depends on the system �size heteroge-
neity, contact angle, and channel dimensions�. This point will
be discussed in the following sections.

We finally study the percolation phase. Since there is a
low sweeping after percolation, the value of the oil saturation
in the final state is controlled by the invasion process. Figure
5 displays the evolution of the captured phase saturation as a
function of the applied capillary number. It decreases when
the applied capillary number is increased. We note that for
low capillary numbers, the sweeping efficiency is very low.

Large oil clusters remain trapped after the percolation. Their
maximal size is on the order of the width of the porous
domain for the lowest capillary numbers tested and decreases
for higher values of Cai. We report in Fig. 6 an estimation of
the maximum cluster size as a function of the applied capil-
lary number. It follows roughly a −0.5 power law, although
the scatters in the data �due to poor statistics� do not allow us
to conclude on the exponent. In the following, it will be
shown that this result is however consistent with the local
velocity measurements in the capillary regime reported in
Fig. 4.

IV. CRUDE MODEL TO CAPTURE THE INVASION
PROCESS

In order to understand the previous data, let us go back to
the invasion-percolation model in presence of viscous forces.
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FIG. 4. Variations of the measured mean local capillary number
�Cal� as a function of the imposed one Cai. The full lozenges ���
correspond to experiments where the water-glycerin mixture is
pushing dodecane in grid b, the empty lozenges ��� correspond to
water pushing dodecane in grid b, and the triangles ��� correspond
to fluorinated oil pushing water in grid a. The full line corresponds
to �Cal�=Cai. The dotted lines correspond to �Cal�=A�Cai, where
the numerical constant A equals from the top to the bottom to 1.8
�10−2 and 5�10−3.
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FIG. 5. Variation of the residual oil saturation at the percolation
Sor

as a function of the applied capillary number Cai. Data corre-
spond to the water-dodecane system in grid b.
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FIG. 6. Maximum size �in the pressure gradient direction� of
remaining oil clusters as a function of Cai for the water-dodecane
system in grid b. The size is reported in numbers of junctions. The
line corresponds to a slope of −1 /2. Note that the data dealing with
number of � greater than 20 correspond to huge clusters where
finite-size effect could play an important role.
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As described in the introduction, in the absence of viscous
forces or at very low capillary number, the nonwetting fluid
enters little by little the largest of the accessible throats since
the flow is driven by the capillary pressure only. At each time
step, only the meniscus located in the largest throat ad-
vances. When viscous forces are considered �i.e., for small
but nonzero capillary numbers� a pressure gradient appears
in the invading and in the captive fluid. The corresponding
viscous drop of pressure induced by the viscous forces may
become on the order of magnitude of the difference of
Laplace pressures between a small throat and a large one.
Then the invasion-percolation mechanism is no longer
strictly valid, and the invading fluid also enters smaller
throats, provided that these are located upstream, beyond a
distance �. This distance represents the width of the front.
Although the invasion-percolation theory with viscous forces
has been developed using different approaches �12,17�, we
propose in the following a greatly simplified model, based on
the arguments recalled above, and that is sufficient to ac-
count for the experimental results reported in the previous
section.

Let us assume that the pressure field inside the displaced
phase remains uniform in the region of the advancing menis-
cus the front and equals p2. This assumption is straightfor-
ward when the invading fluid has a greater viscosity than the
captured one �M �1� and may remain valid even for M �1
due to the geometry of front. Considering, as sketched in Fig.
7, a moving meniscus advancing in a large throat, the pres-
sure p1 in the advancing phase close to the meniscus is given
by the local capillary pressure, i.e., p1m

− p2= pcm
. In the limit

of low capillary numbers, we could neglect variations of the
meniscus curvature due to viscous forces. Inside the invading
phase, the pressure increases upstream due to viscous forces.
At a distance � beyond the moving meniscus the pressure
increment reads 
p1=���1V /h2, where V is the velocity of
the moving meniscus and � is a numerical constant that de-
pends on the aspect ratio of the channels; �=12 for vanish-
ing values of h /w. The distance � is then defined by the
distance at which the blocked menisci could enter the
throats, which implies that the viscous pressure increment in
the invading phase overcomes the Laplace pressure differ-
ence pcm

− pcb
. This condition reads in average 
p1= f	pc

= f	��cos 
a�C �24�, where 	 is the relative standard deviation
of the curvature due to channel dimensions and f is a nu-
merical factor that should be on the order of unity and that
accounts for an effective standard deviation. Thus, � is given
by

� 	
f	pch

2

��1V
= �

�f	�cos 
a�
Cal

, �1�

where Cal is the local capillary number, calculated from the
velocity of the moving meniscus, which is experimentally
measured. In this equation, we have introduced a geometrical
constant � that depends on the geometry of the channels. It is
defined by �=Ch2 /��. For our models of porous media, � is
equal either to 2.2�10−2 �grid b� or to 5.4�10−2 �grid a�.

Then, let us assume that the width of the front � is also the
mean distance between two moving meniscus. Volume con-
servation of the invading liquid allows us to relate the local
capillary number with the global capillary number Cai that is
imposed and reads � /�	�Cal� /Cai. Using Eq. �1�, we obtain
the following predictions for the width of the front:

� = c���	��cos 
a�
Cai

, �2�

or alternatively for the mean local capillary number

�Cal� = c�	��cos 
a�Cai, �3�

where the constants c and c� are numerical factors that ac-
count for both f and the scaling argument linking � and
�Cal�.

This regime holds for capillary numbers where the corre-
lation length � is larger than �, the distance between two
nodes. For higher capillary numbers �Cai�c2	��cos 
��,
�Cal�=Cai. It also implies that � is lower than the width of
the micromodel; for very low capillary numbers, there is
only one moving meniscus simultaneously, and thus we ex-
pect �Cal�=NwCai when Cai�c2	��cos 
� /Nw

2 . This last re-
gime is not observed in the data reported in Fig. 4, but
should exist in a smaller grid or at lower capillary numbers.

This crude model captures well the experimental data.
Indeed, the mean local capillary number varies as a power
law of the applied capillary number with an exponent equal
to 0.5 �see Fig. 4� which is the value predicted by the model.
We do not directly measure � to test Eq. �2� because of too
poor statistics, but Frette et al. reported front width measure-
ments during the drainage of viscosity-matched liquids that
are also consistent with our description; indeed, they found
that ��Cai

−0.6��0.2� �11�. Since the viscous pressure gradient
is directly proportional to the local capillary number, our
model leads, in the capillary regime, to a relative permeabil-
ity for the nonwetting phase that scales like Cai

0.5. One may
note that this result corresponds exactly to the one obtain
recently by Tallakstad et al. in steady-state experiments �25�,
when the viscous dissipation is negligible in one of the two
phases.

Equation �3� also predicts—up to an unknown factor
c—the dependence of the local capillary number as a func-
tion of the capillary pressure heterogeneity and the geometry
of the throats. Although these are not varied systematically,
the two devices used allow us to test this prediction since the
values of 	, �, and cos 
a are well defined. Experiments per-
formed on the water/dodecane system, on the water-glycerol/
dodecane system, and on the fluorinated oil/water system
correspond to prefactors c of 5�10−3, 5�10−3, and 1.8

FIG. 7. Scheme of the pressure field in the case of partial wet-
ting. The colored phase is the invading fluid.
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�10−2, respectively. According to Eq. �3�, these should be
1.7�10−2, 1.7�10−2, and 7.1�10−2, respectively. Even
though these values do not agree well, we should note that
they are consistent when using an empirical value for the
coefficient c of 0.27. In the following section, we will
present numerical simulation allowing a quantitative descrip-
tion of these results.

V. NUMERICAL SIMULATIONS

In order to account for this numerical coefficient, we per-
formed numerical simulations using a crude version of stan-
dard pore-network models �PNMs�. In these simulations, the
pressure field is solved during the invasion which allows us
to displace step by step the menisci for which the pressure
drop between two nodes exceeds the local capillary pressure,
set randomly with a relative standard deviation 	. We used
for the simulation a geometry that is exactly that of the mi-
cromodels used for the experiments. The algorithm used for
the simulation is a crude version of standard PNM that has
been widely used for the last two decades �see, for examples,
Refs. �13,15,22,26��.

A. Description of the PNM

As in standard PNM, there is no volume associated with
nodes, and the throats between nodes are channels of hetero-
geneous width, having a hydrodynamic conductance given
by gij =wijh

3 /��wij /h��1� if the channel is occupied by the
displacing fluid and Mgij otherwise. The numerical factor
��wij /h� that depends on the aspect ratio of the rectangular
channels is calculated according to the analytical expression
reported in Ref. �27�. Similarly to the experimental geom-
etry, the widths of the channels wij are set randomly using a
Gaussian distribution of mean value w and of standard de-
viation �w. The capillary pressure Pc thus exhibits a standard
deviation 	, given by 	=2�w /w2C. If there is a meniscus
located between nodes i and j, the conductance is set to zero
when Pi− Pj � Pcij

, where Pcij
=�Cij�cos 
a� is the local cap-

illary pressure inside the channel ij. In that case, the menis-
cus is blocked; otherwise, it is moving �we only consider
advancing menisci�.

The flow rate qij between two neighboring nodes is then
given by

qij = �ij�gijMij� �Pi − Pj − �ijPcij
� , �4�

where �ij =0 if there is no meniscus between i and j, �ij =1 if
the node j is occupied by the displaced fluid and the node i is
occupied by the displacing one, and �ij =−1 in the opposite
case. In the previous equation, �ij� =1, except for blocked
meniscus where �ij� =0. Mij� =M if the channel is occupied by
the displaced fluid and Mij� =1 otherwise.

At each node, volume conservation leads to



j

qij = 0, �5�

where the summation is made on the neighboring nodes.
Similarly to the experiments, we consider a square lattice,
with for boundary conditions a uniform pressure 
P on the

left side, uniform pressure set to zero on the right side, and
no flux on the other sides. For the initial condition, the left
column is occupied by the displacing fluid and the other
nodes of the lattice are occupied by the displaced fluid.
Equations �4� and �5� form a complete linear system of equa-
tions that could be solved easily. However, since we aim to
perform experiments at an imposed flow rate rather than an
imposed pressure, we use a small approximation to simplify
the calculation. We replace in Eq. �4� the capillary pressure
with the mean capillary pressure �Pcm

� of the moving me-
nisci. We then define the viscous pressure field Pv by Pvi
= Pi if the node i is occupied by the displaced fluid and Pvi
= Pi− �Pcm

� otherwise. Substituting P with Pv in Eq. �4� re-
duces the equation to

qij = �ij�gijMij� �Pvi
− Pvj

� . �6�

This approximation thus leads to a linear relation between
the flow rate Q and the viscous pressure Pv. The equations
are solved with 
Pv=1 and the results are then rescaled to
obtain the desired flow rate.

Since we only want to obtain a crude model that could
described the experiments, we use a rough time step assum-
ing that all the moving menisci have the same velocity, sim-
ply given by Q /Ns�, where Ns is the number of moving
menisci and � is the mean cross-section area of the channels.
With such an approximation, all the menisci that verify the
moving criterion at time ti reach the next node at time ti+1.
This last approximation reduces greatly the computing time.
It leads however to undesirable and artificial oscillations
when looking at Ns as a function of time, especially for high
Cai. We thus focus on the mean value, assuming that is it not
much altered by these oscillations.

Finally, the sequence of the algorithm is the following:
�1� The viscous pressure field Pv is solved using Eqs. �5�

and �6�.
�2� The viscous pressure field is rescaled to obtain the

desired flow rate, and the mean capillary pressure of the
moving menisci �Pcm

� is added to the nodes containing the
displacing fluid.

�3� For each meniscus separating the two phases, the
moving criterion Pi− Pj � Pcij

is checked to determine the
moving and blocked menisci. The number Ns of moving me-
nisci is stored in order to compute the mean local capillary
number �Cal�.

�4� The conductances of the channels containing the me-
nisci are set either to zero for blocked meniscus or to g for
moving ones.

�5� The nodes reached by the moving menisci are updated
with the displacing fluid.

This sequence is repeated until the invading fluid reaches
the right side of the square lattice.

B. Comparison between experimental and numerical results

One of the outputs of the simulation is the number Ns of
menisci that move simultaneously, which is directly linked to
the local capillary number by �Cal�=CaiNw /Ns. Equation �3�
suggests that the relevant parameter is not the capillary num-
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ber, but a modified one Ca defined by Ca˜=Ca /�	�cos 
a�.
The latter is used in Fig. 8 where the modified local capillary
number is plotted as a function of the imposed one. All the
points obtained through the numerical simulations collapse
on a single curve. We evidence three regimes. For ultralow

values of Ca˜

i, �Ca˜

l�=NwCa˜

i. In this regime, the width of the
front is larger than the size of the porous media. This regime
thus corresponds to a finite-size effect regime. For higher

values of Ca˜

i, the front size becomes smaller than the porous
media size, and we enter in the capillary regime character-
ized by a power law with an exponent close to 0.5. As sug-
gested, the boundary between the finite-size regime and the
capillary one depends on the size of the micromodel. High

values of Ca˜

i correspond to the viscous regime, where

�Ca˜

l�=Ca˜

i.
Since in the simulations the parameters 	 and � could be

varied independently and on a wider range than in the ex-
periments, the numerical results validate Eq. �3� for all of its
dependencies in the tested range. We have also reported in
Fig. 8 the experimental data presented in the previous sec-
tions. Their agreement with the numerical results is beyond
the uncertainty of the data. In particular, the numerical simu-
lation predicts quantitatively the crossover between the vis-
cous and the capillary regimes. This validates the value of
the empirical numerical factor c of 0.27 ��0.02�. The cross-

over happens for Ca˜=c2=7.3�10−2.
The very good collapse in Fig. 8 suggests that the ap-

proximations made in the PNM do not alter the final results
when looking at the mean value of the number of selected
paths. This quantity appears to be robust and to reach rapidly
a steady state, in both experiments and simulations. An
analysis of the fluctuations during the invasion would in con-
trast require us to remove the approximations made �as in

Ref. �13��, at the price of a great increase in the computing
time.

VI. DRAINAGE AFTER THE PERCOLATION

Let us finally discuss the evolution of the filling after the
percolation. After percolation the clusters trapped during the
invasion process are stable, and a freezing of the structure of
the invading fluid is observed after the percolation. The
analysis of the size of the clusters is straightforward and
follows the previous arguments. Since these clusters are
formed during the invasion, their size is similar to the width
of the front, which—according to Eq. �2�—should scale like
Cai

−0.5. The experimental data, reported in Fig. 6 are consis-
tent with such a power-law variation. The freezing of the
structure of the invading fluid that is observed after the per-
colation is more striking. One may wonder why the clusters
remain definitively trapped. It is easy to note that in partial
wetting situations these structures are disconnected. The
single way to sweep the trapped fluid is to displace the clus-
ters.

Let us analyze in detail the conditions required for the
displacement of a cluster. A cluster moves forward only if the
pressure difference between the two points 1 and i, p1− pi
=
P1i, located in the invading phase exceeds the local ad-
vancing capillary pressure, given by ��cos 
a�C1−��cos 
r�Ci,
where 
a is the advancing contact angle and 
r is the reced-
ing contact angle. Symmetrically, a cluster could move back-
ward if 
P1i is below ��cos 
r�C1−��cos 
a�Ci. Two distinct
points i and 1 located on the borders of the clusters bear a
drop of pressure due to the flow in the invading fluid, 
P1i
=��VL1i /h2, where L1i is the distance between locations 1
and i. The stability criterion, sketched in Fig. 9, is thus given
by

Ci

�
+

f	CL1i

�
� C1 � ��Ci +

f	CL1i

�
� , �7�

where �=cos 
a /cos 
r. Since the curvatures C1 and Ci could
only vary in a limited range, it is not easy at first sight to tell
if this criterion may be filled or not. The menisci located on
the borders of the clusters are however particular. During the
invading step, they have not been filled. This suggests that
the menisci may find locations in the junctions where their
curvatures check:
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FIG. 8. Modified local capillary number �Ca˜

l�
= �Cal� /�	�cos 
a� as a function of the imposed one Ca˜

i. The nu-
merical results �small circles� are plotted together with the experi-
mental data reported in Fig. 4 �big symbols�. The dashed line is

�Ca˜

l�=Ca˜

i, holding for the viscous regime; the solid line is �Ca˜

l�
=0.27�Ca˜

i, holding for the capillary regime; and the dashed-dotted

line is �Ca˜

l�=NwCa˜

i holding for the finite-size regime at ultralow
Cai. The simulation parameters are Cai �varied between 10−8 and
10−2�, 	 �varied between 5�10−3 and 0.1�, � �varied between 10−2

and 0.1�, M �varied between 0.7 and 10�, cos 
a=−1, and Nw=50.

FIG. 9. Scheme of a trapped cluster. The colored fluid is the
injected fluid. The arrows indicate the flow direction.
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C1 = Ci
cos�
i�
cos�
1�

+
f cos�
a�	CL1i

� cos�
1�
, �8�

where 
1 and 
i are comprised between 
r and 
a. Locations
following Eq. �8� clearly fill the criterion of Eq. �7�, implying
that the oil clusters are stable in partial wetting situations.
Moreover, due to contact angle hysteresis, many other equi-
librium positions in the vicinity of the one defined by Eq. �8�
exist. This suggests that the clusters are going to be stable
toward pressure fluctuations and explains the absence of
sweeping efficiency after the percolation.

VII. CONCLUSION AND OUTLOOK

In this work, we revisit the drainage of a fluid by a more
viscous one in porous media. We perform experiments in
microdevices prepared using standard lithography techniques
with controlled throat size distribution. Experiments evi-
dence the role of the viscous forces during the invasion pro-
cess and their competition with the capillary force heteroge-
neities. At very low applied capillary number, the invading
liquid flows through a single channel at the time and build a
very open structure. Increasing the applied capillary number
induces an increase in the role of the viscous forces. Due to
the geometry of the structure, the viscous pressure gradient
in the oil phase is very small. At the opposite, the pressure
inside the advancing meniscus increases as a function of the
distance to the meniscus and, at a given distance from the
front, becomes greater than the Laplace pressure required to
enter a small throat. This induces a modification of the
invasion-percolation process. All the throats upstream this
distance are filled by the oil, unless they are trapped. This
argument leads to a crude model linking the applied capillary

number calculated by using the viscosity of the injected
phase to the number of selected path. The local capillary
number is predicted and observed to scale like Ca0.5, which
means that the correlation length of the invasion process is
proportional to Ca−0.5.

Moreover, our analysis suggests that it is a modified cap-

illary number Ca˜=Ca /�	�cos 
a� that solely governs the in-
vasion, taking into account the pore throat geometry and the
size heterogeneity. If our model accounts for the experiments
up to an unknown factor, we obtain a quantitative agreement
using numerical simulation based on a pore-network model.
Indeed, we report a master curve in the parameter plane

�Ca˜

i , �Ca˜

l�� where experimental and numerical results col-
lapse. It shows that the capillary fingering occurs below

Ca˜

i=0.1.
After the percolation, the structure of the invading fluid is

very rapidly frozen. The inlet and the outlet of the device are
bypassed by a continuous path of water where no meniscus
is present. The viscous drop of pressure is too low to sweep
the clusters. Contact angle hysteresis promotes the stability
of the trapped structure.

This work allows us to set quantitatively the basis of the
drainage process. It opens the road to the analysis of the role
of the features of the injected fluid. The outlook deals with
the analysis of the wetting and rheological properties of the
invading fluid on the invasion and after percolation phase.
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